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A novel analytic method for deriving and analyzing probability distribution 
functions of variables arising in random walk problems is presented. 
Applications of the method to quasi-one-dimensional systems show that the 
generating functions of interest possess simple poles, and no branch cuts outside 
the unit complex disk. This fact makes it possible to derive closed formulas for 
the full probability distribution functions and to analyze their properties. We 
find that transverse structures attached to a one-dimensional backbone can be 
responsible for the appearance of power laws in observables such as the dis- 
tribution of first arrival times or the total current moving through a (model) 
photoexcited dirty semiconductor (our results compare well with experiment). 
We conclude that in some cases a geometrical effect, e.g., that of a transverse 
structure, may be indistinguishable from a dynamical effect (long waiting time); 
we also find universal shapes of distribution functions (humped structures) 
which are not characterized by power laws. The role of bias in determining 
properties of quasi-one-dimensional structures is examined. A master equation 
for generating functions is derived and applied to the computation of currents. 
Our method is also applied to a fractal structure, yielding nontrivial power laws. 
In all finite networks considered, all probability distributions decay exponen- 
tially for asymptotically long times. 

KEY WORDS: Random walk; probability distribution functions; first 
passage time; scaling. 

1. I N T R O D U C T I O N  

In recent years, with the realization that many disordered systems have 
interesting geometric structures, some of which have been coined fractals, it 
has become clear that random walks (12) on such systems provide a 
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worthwhile research topic. These systems do not enjoy the simplicity of 
periodic lattice structures; however, they exhibit many exotic properties 
and new physical phenomena. (3) The extensive literature in such fields as 
percolation (4) or flow through porous media (5'6) is merely a part of the 
work in this domain. 

Since nontrivial geometry plays an important role in the field of dis- 
ordered systems, it is of crucial importance to differentiate between purely 
geometric effects and dynamical ones, whenever possible. For  example, the 
difference between diffusion in a periodic system and in an irregular one is 
a geometric effect, (7'8) since the microscopic mechanisms are (in many 
cases) the same in both systems. As shown below, one may obtain 
geometrical effects that mimic dynamical effects. In such cases the 
distinction might be difficult to make. 

Investigations of properties of random walks have mainly concen- 
trated on mean quantities, such as mean first passage times and low 
moments of various observables. Detailed distribution functions (such as 
the distribution of first arrival times) have rarely been presented in 
analytical form. Obviously, full distribution functins are measurable in 
many cases and are of both physical and mathematical interest. 

In the present work, we present methods for deriving full distribution 
functions of various physical quantities. Our formulas are analytic and we 
show how one can use them to deduce asymptotic properties such as 
various power laws characterizing correlations and spectra. The method 
and terminology used below rely heavily upon Ref. 9, in which a method 
for deriving generating functions was presented. Most of the applications 
below are to quasi-one-dimensional systems which are not lattice systems. 
Applications to higher dimensional systems will be presented in future 
publications. 

The structure of this paper is as follows. In Section 2 we present the 
framework of the method for calculating distribution functions. In Sec- 
tion 3 we calculate the distribution functions for first passage time and first 
return time on a segment. Section 4 generalizes the results obtained for the 
simple segment to the case of a segment with dangling bonds. In Section 5 
we evaluate the role of bias on the diffusion process and compare some of 
our results to an experiment. In Section 6 we present a brief summary of 
the results and relate to future work. Since some of the computations are 
rather lengthy, we present them in Appendices. Appendices A and B 
contain the detailed calculations leading to the results of Section 3 and 4. 
Appendix C contains computational details related to Section 5. 
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2. DEFINITIONS AND ASPECTS OF THE METHOD 

In this section we review the main features of the method described in 
Ref. 9. As there, we restrict ourselves to nearest neighbor hopping in 
discrete time. We consider networks composed of connected segments 
(each of which is composed of a finite number of points; cf. Fig. 1). 

The following quantities r are called elementary probability dis- 
tributions: 

1. Xr(n): the probability to stay for n (time) steps at a point where 
the staying probability per step is r. Obviously: Xr(n)= r n. 

2. TA~(n): the probability to leave a point A on the first step and 
reach point B, for the first time, in n steps without ever returning 
to A. 

3. QAB(n): the probability to leave a point A on the first step and 
return to A for the first time without ever reaching B. 

The probability to leave a point A and reach point B, for the first time, 
in n steps (the walker is allowed to return to A as often as desired) is 
denoted by GAs(n) and is not "elementary": it is expressible in terms of the 
elementary probability distributions. r 

The generating function associated with a probability distribution 
P(n) 1is 

F(z) ~ - ~ znP(n) (2.1) 
n - - O  

The sum of probabilities P(n) does not exceed unity, so that (2.1) is an 
absolutely convergent series on the unit disk. In principle, P(n) can be 
derived from F(z) by the use of Cauchy's theorem. For the sake of 

Fig. 1. A "random" network of points. The lines are drawn to guide the eye. 

822/48/1-2-17 
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definiteness (and without limiting the generality of our results) we have 
chosen to assume that the probability of hopping from a point to any of its 
nearest neighbors in a single step is 1/4; it is zero for points other than itself 
and its nearest neighbors (we thus allow at most four nearest neighbors). 
When biased walks are considered, this assumption is modified. 

It is easy to see that the generating function corresponding to staying 
at a point that has k nearest neighbors (9) is 

1 
Xl k/4(Z)= 1 --Z(1 -k/4) 

Other generating functions are presented in Ref. 9. When no confusion 
can arise, we shall denote the probability function and its corresponding 
generating function by the same letter. 

3. D E M O N S T R A T I O N  IN A S IMPLE CASE: R A N D O M  W A L K  
ON A S E G M E N T  

The problem is to calculate the probability distribution P~v(n) for a 
walk starting at one end (point "0") of a segment of length N (i.e., having 
N + 1 points) and reaching its other end (point "N") in n steps under given 
restrictions (see Fig. 2). We define the following functions: tN-= To,~v and 
qu = QO,N. We found in Ref. 9 that 

(z) 2X~/2 (3.1) 
qN+l=  4 1--XI/2qN 

and 

tN=[(qN+I--qN)(1--XI/2qN)] 1/2 
X1/2 (3.2) 

Hence 

z (  qN)  1/2 
tN=~  1 -  (3.31 

qN+l 

Fig. 2. 

0 0 t 4 0 0 
0 I 2 3 N 

The straight segment. Each loop attached on the sites indicates the (i/41 probability 
to stay. 
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The solution (9) of Eq. (3.1) is 

where 

,l~+ 1 _ 2 N - 1  

1 + ( 1 - - 4 a )  1/2 
2+ = 2 (3.4) 

2 
A (3.5) 

2+ 

(4 a = (3.6) 

Note that A is a known function of the complex variable z. In terms of A 

1 A I _ A  N 1 
q u  = (~.7') 

X l / 2  A + 1 1 - -  A N 

It follows from Eq. (3.3) that 

z 
t N = _  A ( N  1)/2 

4 

1 - A  
~, (3.8) 

1 - - A  N 

We now wish to analyze the structure of qN and l N in the z plane. First of 
all, we show that qN and t u possess no branch points in the complex plane. 
Clearly, (X1/2) -~ is analytic in z. There are three possible "sources" of 
branch points in Eq. (3.8). Either A diverges or it has a branch point itself 
or A = 0 in the complex z plane (and N -  1 is odd). The quantity t u can 
have a branch point only if A has one. However, A = 0 implies, using 
Eq. (3.5), that 2 = 0  or A+=oo .  Using Eq. (3.4), we find that a = 0  or 
a =  oo is implied, respectively. Equation (3.6) implies z = 0  and z = 2 ,  
respectively. However, z = 0 cannot be a branch point because q N ( z )  and 
tN(Z ) a r e  analytic inside the unit disk. When z--, 2, a ~ o% and A--* - 1  
[from Eqs. (3.4) and (3.6)], contrary to the assumption A = 0. Hence A 4:0 
in the complex z plane. It is also impossible for A to diverge, since 
Eqs. (3.4) and (3.5) then imply that 4+ =0 ,  which can happen only for 
z =0 ,  where we know that q N  and t N are analytic. Finally, we have to 
check whether A itself has a branch point. Upon inspecting Eqs. 
(3.4)-(3.6), we see that A can have a branch point only when a = 1/4. It 
follows from Eq. (3.6) that at this point z = 1. The function (a) is analytic 
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at z = 1. In the neighborhood of this point we have z = 1 + ee i~, where e ~ 1, 
and 

2_+ = 1 _+ [ -4a ' (1 )ee iO]  1/2 (3.9) 

Upon a rotation around z = 1 from ~b = 0 to ~b = 2zt, we have A ~ A 
Since qu and tu are invariant under this transformation, they have no 
branch points. The only possible singularities of qu(Z) and tu(Z ) in the 
complex plane are poles. When z--+ oe, A--* 1 nd hence qN and t N are 
bounded for large enough z. This means that contour integration of qN/Z N 
and tN/Z N for contours with z large enough tend to zero as z --* o9 if n > 1. 

The poles of t~v are located on the unit circle in the A plane: 

Ap = e 2izrp/u, p = 1,..., N- -  l (3.10) 

and A itself has no pole. When z ~ o% then A --* 1 and t u--+ z/4N. Con- 
sequently, application of Cauchy's theorem, when F(z)  is replaced by tN(Z ) 
o r  qN(Z), can be performed by considering the poles outside the unit disk. 
When N >  1 the "contour at infinity" makes no contribution. The technical 
details are presented in Appendix A. The result is 

tN(n)=~-~ ~ ( - - )P+lcos2"  ~-~ tg 2 ~-~ 
p = l  

For large n, tu(n) is dominated by the first term in the sum, i.e., by the pole 
closest to unity. Approximating the cosine by an exponential (for N>> 1), 
we obtain for large n 

e (zc/2N)2n (3.12) 

which is a valid approximation for n >~ N 2. 
Figure 3 presents a plot of tloo versus n and the asymptotic exponen- 

tial decay is indeed observed [the dotted points correspond to Eq. (3.12)]. 
Next, we wish to derive the probability distribution Gu(n) for the first 

passage time from "0" to "N." As shown in Ref. 9, 

G x X 3 / 4 t N  (3.13) 
1 - -  X 3 / 4 q  N 

Substituting the expressions for tN and qN [Eqs. (3.7) and (3.8)] into 

Eq. (3.13), we have for GN in the variable/~ = 

2 # N - - l ( 1  -t-t/) 3 
GN = 4 1 + tl 2N+ 1 (3.14) 
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Giodn)' 

tloo(n) 

io-3 

1(5 4 

10 -5 

10-6 

i0 -7 

X 

/ \ 

__G)oo(n )  

I _ . _  tloo(n) 
i o - 8  I I ~ ) ) 

10 2 10 3 10 4 iO 5 n 

Fig. 3. Plot of Gloo and t~oo versus n for the straight segment (thick lines). The crosses are 
the asymptotic values as given by Eqs. (3.15) and (3.20). The asymptotic approximations are 
seen to agree reasonably well with the exact results for n >1 <n > [i.e., <n > ~ 2/3N 2 for GN and 
{n> ~2N(N+ 1) for iN]. 

The poles  of  G N a r e  loca ted  at  
2rcip 

# =  - e x p  2 N +  1 ' p = 1 ..... 2 N  (3.15) 

As before, G N has no o ther  s ingular i t ies  bu t  poles  in the complex  z plane.  
In this case we find (see A p p e n d i x  A) 

GN(n)=  ( -  )u 2u 
2 N +  1 ~ ( - )p sinZ" 2N+rcP 1 cos ~ - ~ +  1 (3.16) 

p = l  

The leading  te rm for n >> N comes  f rom the pole  c o r r e spond ing  to p = N 
and  p = N +  1 (which is the same pole).  Asympto t i ca l l y  

7[ 
GN(n) = ~ - ~  e - (~/4N)2, (3.17) 



262 Noskowicz and Goldhirsch 

(see the dotted points in Fig. 3). The slower exponential decay (with 
respect to that of l u )  is due to the fact that the walker is allowed to return 
to the origin. The mean first passage time (MFT) is ( n )  = 2N(N+ 1). This 
result is obtained by using Eq. (3.16) or directly (see Ref. 9). 

4.- R A N D O M  WALK ON A S E G M E N T  WITH DANGLING LOOPS 

The system we consider is shown in Fig. 4. The "length" of each loop 
is m and the length of the segment is N. Define r m to be the generating 
function corresponding to the probability to leave a site on the "backbone" 
on the first step, enter the loop of length m, and return to the same site for 
the first time at step "n." Since the walker may either return through the 
direction of entry into the loop or go all the way around the loop, we 
obtain 

r m = 2 ( q m +  tm) (4.1) 

Next, define Ym(Z) to be the generating function corresponding to the 
probability to go from a site on the backbone back to itself, without 
leaving to another site on the backbone. Summing over all multiple 
excursions into the loop, we have 

Ym =- 1 -[- r m q- ( rm)  2 + . . . .  1 / (1  - rm) (4.2) 

Note that for m = 1, we have r m = 2tl = z/2 and Y1 = X m ,  which reduces to 
the previous case (i.e., no dangling loop). 

The reeursion relations for Q N  and T N a r e  the same as Eq. (3.1) and 
(3.2) with Xv2  replaced by Y,~ (at the first step the walker must go to site 
'T') .  The recursion relations now read 

z)  Ym (4.3) 
Q ~ =  -4 1 - -  YmQN 

O 0  I 2 . . . . . .  N - I  

A 

N 

Fig. 4. The straight segment with dangling bonds. The extra little loop at the origin (site 
"0") represent the staying probability there (1/4 in the absence of bias). 
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and 

Define 

QN'/I  QN'IIJ2 
Ym (4.4) 

~ 
Then define 2+_ and A as in Eqs. (3.6) and (3.7). QN and TN are given by 
expressions identical to Eqs. (3.7) and (3.8). Consequently, 

1 - ( 1  - 4a) 1/2 
A = (4.6) 

1 + (1 - 4 a )  I/2 

It follows from Eqs. (4.5) and (4.6) that 

z , / 5  
 Y"-A+I (4.7) 

As before, the only singularities of TN are on the unit circle in the A plane. 
The location of the p th  pole in the z plane follows from the expression for 
Ym in (A.10) and Eqs. (3.10). Using Eq. (4.7), we obtain 

where 0 is defined b y  

2 sin2(Tzp/2N) = sin 0 tg(mO/2) 

1 

z = cos2(0/2 ) 

(4.8) 

Equation (4.8) has m real solutions (or m - 2  solutions, depending on the 
lhs). This fact is exhibited in Fig. 5, which shows the rhs of Eq. (4.8) and its 
intersections with a fixed value of the lhs of this equation. It can be proven 
(see Appendix A) that Eq. (4.8) has only one complex solution at 0 = rc + iy 
and y = O(1/m) for large enough m. Since 0 = zc corresponds to z = o% this 
solution is not relevant for large m and n (see Appendix B). Since p can 
assume N -  1 different values, the number of solutions of Eq. (4.8) equals 
( N -  1)(m + 1). It is important to note that z = 1 is not a pole. Using the 
pole structure, we can now evaluate the distribution function. The result for 
TN(n) is [see Appendix A for a derivation of expressions for QN(n) and 
GN(n)]: 

1 N--1  ,sin2~cos2(,,_l)OftgOp 
E 2 (_)r+ T 

p = I {Op} 

1 + COS m o p  
x (4.9) 

m sin 0 r + sin mop cos 0 r 
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] s i n 0 t g - ~  

7/ 1 ,\ ,\ ,\ 
zrrp 

2sin 2N 

r n = 7  

2 

l 
sinStg40 

. 2 r r p  

, , J , r n ~ 8  
ll- 

,~0 

Fig. 5. Plot of the "pole equation" [Eq. (4.8)] for m=7, 8. The horizontal line equals 
2 sinZ(rcp/2N). 

where {Op} is the set of solutions of Eq. (4.8). Substituting m =  1 (no 
loops), we recover Eq. (3.11). 

Obviously Ym is the generating function for the mean waiting time 
distribution ~,,(n) [denoted ~u(t) by Montrotl  and Weiss(14)]. The mean 
first passage time (n > follows in accordance with the result in Ref. 9, and 
the mean waiting time t-is 

{= 2m -- 1 (4.10) 

Note the linear dependence of the waiting time on the length of the loop m. 
Figure 6 contains plots of GN as a function of n for several large values 

of m [see Eq. (A.18)]. G~,(n) has been normalized by its value at the MFT. 
Note that hump structure of GN, which shows up distinctly for m = 100 
(N = 10). It exists for higher values of m, too. Asymptotically for n ~ oo the 
decay of GN is exponential, as expected. When one plots GN(n) for several 
values of m keeping the parameter o~=m/N 2= {/<n> fixed, the resulting 
shapes are similar in the region of <n> (see Fig. 7). When ~ 1 the shape 
of GN is similar to the one obtained in the absence of dangling bonds. The 
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Fig. 6. Plot of Gto for m = 100, 200, 600, 1200 normalized by their MFT value versus n/(n). 

humped structure appears for e = 1. When c~ ~> 1 this structure disappears. 
It is interesting to note that at n =  ( n )  we have a transition in the slope, 
from a plateau-like to an exponentially decreasing behavior. In Appendix B 
we present an asymptotic analysis of TN(n) and GN(n). In the n ~  
asymptotic regime, these functions are dominated by the pole closest to 
unity, yielding a simple exponential decay. When c~ ~> 1 we find a n  n -3/2 

decay (see Appendix B) even for intermediate values ofn. 
Next, consider gtm(n), the waiting time distribution. In Appendix A we 

give an expression for ~gm(n) [see Eq. (A.20)]. Asymptotically in n (see 
Appendix B) we find 

~ m ( n ) o c n  -3/2 for 1 ~ n , ~ m  2 (4.11) 

Figure 8 is a plot of ~rtm(rt ). The asymptotic power-law behavior sets in 
already at very low n. Starting at n = m 2, the decay of 7tin(n) is exponential. 
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Fig. 7. Plots of G for m / N  2 = 0.75 for N = 8, m = 48 and N = 24, m = 432. Both curves have 
almost the same shape. Compare with the plateau region with the asymptotic values defining 
is, as derived in Appendix B. 

A similar behavior  for ~rtm(n ) w a s  previously obtained by Scher and Lax I15) 
in a different context in their work on t ranspor t  in disordered solids. They 
obtain a waiting time distribution like Eq. (4.11) based on dynamical  con- 
siderations, i.e., the spectrum of transit ion rates, whereas our  result is of 
pure geometric nature. One sees that  the same waiting time distribution 
can follow from a dynamical  model  and from a geometric construction. 
Thus, it might  be difficult to disentangle geometric effects from dynamical  
ones. On  the other  hand, tf  one knows that  very large dangling bonds  are 
nonexistent in a given physical system, then a very dispersive waiting time 
distribution must  be of a dynamical  nature. In  percolat ion clusters this 
dispersion can be of geometrical  origin. 

It is interesting to note that  the formulas for T N and G N [Eqs. (4.9) 
and (A.18)] (as functions of  the variable 0) are independent  (in form) of 
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Fig. 8. P lo ts  of t/tm(rt ) for m =  10, 40, 80 versus n. The decay is c lear ly  n -3/2 wi th  an 

exponen t i a l  cutoff  at  n = m 2. 

the transverse structure. The latter enters through the values of Op only, 
which for T N a r e  given by Eq. (4.8). The corresponding equation for G N is 
given in Appendix A. Thus, our method enables us to compute these dis- 
tribution functions for networks that have transverse structures different 
from the one presented here. 

5. THE ROLE OF BIAS A N D  C O M P A R I S O N  
W I T H  E X P E R I M E N T  

An example of an application of the method presented above is to the 
anomalous dispersion in amorphous solids. (16) An early experiment by 
Pfister 117) is now briefly described. A thin sample of amorphous solid (e.g., 
AszSe3) is placed between two electrodes. A light flash excites electron hole 
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pairs close to the anode. The resulting electron is absorbed by the anode 
and the hole moves toward the cathode. It is assumed that its motion is 
governed by hopping. Once the hole reaches the cathode, it is neutralized. 
The quantity measured in this experiment is I(t), the instantaneous total 
current of the remaining holes in the sample (and not the number of holes 
arriving at the cathode per unit time). 

Scher and Montroll  (16) related the two slopes of the plot of I(t) as a 
function of the time to a parameter c~ characterizing the tail of the waiting 
time distribution, i.e., gt(t)oc t -(~+~/, where c~ is material-dependent (e.g., 

= 0.8 for TNF-PVK).  (18) Let us assume that the waiting time distribution 
is of geometric (and not dynamical) origin and that it is due to the 
existence of the dangling bonds. Obviously, this assumption is not 
necessarily true. We present it as an extreme case in which geometry alone 
is responsible for the waiting time. In such a case e is geometry-dependent. 
As an illustration, we find [-by computing ~ m ( n ) ]  that c~= 1/4 for the 
structure depicted in Fig. 9. This is a dangling bond with a loop- 
within-loop structure (all loops are of length m), which is self-similar (see 
Appendix A). 

Consider a one-dimensional system (see Fig. 3) in which the hopping 
probabilities are Pl in the direction of an external bias (to the right) and P2 
against the bias (p~ > P2). For  definiteness we choose p~ + P2 = 1/2. Define 
b, the bias parameter: 

Pl = Keb and P2 = xe-b; hence x = 1/(4 cosh b) 

Inside the dangling bond we assume for simplicity that the walk is not 
biased, i.e., the dangling bond is orthogonal to the direction of the field. In 
Pfister's experiment, typical numbers are: voltage across the system 

Fig. 9. The dangling "blob." The circles are of size m. 
Each site of the network is assumed to be attached to 

two such blobs. 
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V =  1000 V, thickness of the specimen L ~  91/~m, temperature T ~  300 K. 
Therefore (assuming detailed balance), the bias parameter  is b = eA V/ekT, 
where A V= V/N is the intersite potential difference, k is Boltzmann's 
constant, and e is the dielectric constant. The intersite separation is  (16) 

1.17 x 10 - 6  cm, SO that N =  8 x 103 and b ~ 1. As shown in Appendix C, the 
bias is to be considered strong whenever bN>> 1, which is obviously the 
case here. We now proceed to compute the total current corresponding to 
the above model. 

The total instantaneous current is composed of contributions due to 
carriers that are on the backbone and hop to a neighboring site on the 
backbone. Hopping to the right (left) contributes a positive (negative) unit 
of current. Define Pk(t) to be the probabili ty to be at time t at site "k" on 
the backbone. The total current I(t) is obviously equal to ( P l - P 2 )  times 
the total number of carriers residing on the backbone at time t. Therefore 
I(t) is given by 

[( t )=N,(pl -Pz)( f io+PI+ "'"-[-Pu 1)+Ncf ioP2 (5.1) 

where N,. is the number of carriers at t = 0. The second term on the rhs in 
Eq. (5.1) accounts for the fact that the carrier must leave the origin only to 
the right. The corresponding generating function Pe(z) satisfies the 
following "master  equations" (A,, is defined in Appendix C): 

fio = Am + Pl p2zAm 

Pk=P~_lp,ZYm+Pk+,p2zYm, k = l  ..... N - 2  (5.2) 

PN I=PN 2PlZYm 

The rationale for these recursion relations is as follows. The probability to 
be at a point 0 < k < N is composed of the contributions of walkers who 
must have first reached its nearest neighbors on the backbone, then moved 
to "k" and (possibly) wandered through the loop attached to "k" and came 
back to it. At k = N - 1  there is no contribution of walkers arriving from 
k = N, because of the assumed absorbing boundary condition there. Since 
all walkers start at k = 0, by assumption, the probabil i ty/5 o is composed of 
a part  due to walkers who never left to k = 1 and those who did leave but 
eventually returned from k = 1 to k = 0. Define 

P v = / 5 o + P , +  "'" + P x  ~ (5.3) 

Summing Eqs. (5.2) and using the fact that p~ + Pz = 1/2, we obtain 

_fit =Am+/51p2zAm-/51pzzYm-p~ lPlZYm (5.4) 
1 - z Ym/2 
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We note that P N - I P l  Z = GN" Using (C.13) and the first equation in (5.2), 
we have 

1 - - G  N 
PT = Ym (5.5) 

1 -- z Ym/2 

We are interested in the current for large times (t > N) in the limit of very 
long dangling bonds. This can be accomplished by use of a Tauberian 
argument (see Appendix A.3). First, in Appendix A.3 we show that the 
large-t limit corresponds to small 0. We also find that [see Eqs. (A.10)] 

where 

( z Y m / 2 )  - I  = 1 - s i n  0 tg(mO/2) 

1 
z = e i~  - -  

COS2(0 /2)  

The latter yields, for small 0 (large t), 0~2(i~5) ~/2. In the long-time limit, 
sin 0 = 0, but for times much shorter than the mean waiting time it is not 
necessarily true that tg(mO/2) = mO/2. If m is large enough, tg(mO/2) = O(1 ). 
Note that tg(mO/2) is bounded in the range considered. Equation (A.2) 
(0 - x + iy ) reads 

mO s in(mx)+is inh(my)  
tg 

2 - cos(rex) + cosh(my) 

with nonvanishing denominator; since O=2(i(J) ~/2 and q$ is real, then 
y = (2q~) 1/2. In the small-0 limit, we find, following some algebra and using 
Eqs. (C.5), (C.6), and (C.10), 

0 mO) 
A ~ e ~h l _ 2 t _ _ ~ c o s h b t g _  ~- 

Hence, for small b, by Eq. (C.16), 

(5.6) 

~ i (b + t ~  cosh b tg 

Using Eq. (C.17) and defining 

cosh b mO 
f l = - - -  tg 

th b 2 

we obtain 

-- 2(1 - -  0 2 / 4 )  e (b + o/s) _ e b _ 2e N0/~ sinh(b + Off) 
PT--  Otg(mO/2) e(~+~ -b 

(5.7) 
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It remains to evaluate the term PoP2 in (5.1). Po is the generating function 
to stay at site "0" without leaving to "N." Using Eq. (C.12), we have 

Po = Am (5.8) 
1 - A m Q N  

Since bN> 1, we have from Eqs. (C.7) and (5.6) 

A 
QN'~ Yml A + I 

and using Eq. (C.10), 

QN ~ z(pl pzA )1/2 

Finally, using Eq. (C.13) and (5.6), we obtain 

/50P2 ~ 
1 1 

z ( l /2p2)(zym/2)- ' -  1 - ( 1  - 0 ~ )  

mO , I~ 1 /5oP2 ~ (1/2p2)2 

which for large t behaves like t-3/2 since 0 ~ ~//-~ and the factor (=  K) mul- 
tipling 0 is approximately constant. Thus, /5 0 P2 oc 1 + K x /~  and it follows 
that PoP2 goes like t -3/2 for (intermediately) large t. We consider two 
regimes: NO/b>>l and NO/b~l  (and fl~i/b). When NO/b>l, then 
Procl/O, i.e., Proct -1/2 for t>(N/b) 2. When NO/b~l ,  then /sroc 
N/b(1 -�89 i.e., ~st oct -3/2 for t >> (N/b) 2. Since PoP2 behaves like t -3/2, 
the behavior of the total current is dominated by /sT and I( t )~Nc/sVr.  
Thus 

i-1/2 for t~(N/b)  2 
I(t)oc -3/2 for t>>(N/b) 2 

The "transition time" between the two power law regimes is thus propor- 
tional to (N/E) 2. Experimentally, the transition in the slope (which is used 
to operationally define the transit time in Ref. 16) is found to happen at 
t,,~ (N/E) z2. Thus, our results agree reasonably well with experiment. The 
correction to the power 2 (i.e., 2.2) must follow either from a dynamical 
effect, such as the waiting time distribution, or the oversimplification 
involved in the model for the dangling bond. For example, the latter can be 
of fractal nature. The time at which the experimental curve starts to decay 
exponentially is, according to our theory, related to the mean waiting time 
(trapping time). The transit time so defined is not the mean first passage 
time r(b) for a specific carrier. In Appendix C it is shown that 

~(b) ,~ N ( 2 m -  1) coth b = ( 2 m -  1)(N/b) 
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which is m-dependent. The factor ( 2 m - 1 )  is the mean waiting time in a 
dangling bond. The effective mean waiting time is thus field-dependent. The 
bias effectively reduces the time spent in the "traps." It is interesting to note 
the role of the length of the dangling bond m in this problem. As long as 
typical times are much shorter than the time necessary to "sense" the 
length of the dangling bond (i.e., the typical time to move through its entire 
length), the physics cannot possibly depend on the length m. As a result, 
the dangling bond is effectively infinite in length and the dispersion has no 
specific time scale: it is a power law. When one considers larger times, the 
length of the dangling bond acts as a cutoff on the residence times in it and 
one crosses over to exponential decay of the transit time distribution. This 
geometric picture seems to be relevant to many other physical systems, 
such as porous media. However, as noted above, we cannot rule out a 
dynamical, nongeometric, origin of the waiting time distribution, especially 
in solid-state physics. Both approaches lead, however, to similar results, 
which means that in this case, as we mentioned before, it is very difficult to 
disentangle geometry from dynamics (without additional information). 

6. S U M M A R Y  A N D  D I S C U S S I O N  

We have presented a method to compute the full distribution functions 
for random walks on networks. The technical part involves an analysis of 
the analytic properties of the generating functions corresponding to these 
walks. The key observation in this analysis is that a contour integration 
(aimed at finding the distribution function) on the unit circle can be regar- 
ded as an integration on the boundary of the domain outside the unit disk. 
In this domain the generating functions normally have only simple poles 
(we found no cuts, but we encountered examples of multiple poles), which 
makes the computation of the distribution fuctions possible. The result in 
every case we have presented is a closed formula for the distribution 
function. The type of formulas we have obtained can be further analyzed to 
obtain simple expressions which are uniformly valid for all times; this 
analysis, however, is left to a future publication. (1~ We have seen that for 
long enough times, all distribution functions decay exponentially. The rate 
of this decay depends on the location of the pole, of the corresponding 
generating function, which is closest to the origin. When a random walker 
on network can be delayed for long times-~either because of the existence 
of long dangling bonds or side structures--or because of long trapping 
times (waiting times), one expects a power law decay of the distribution for 
intermediate times. This power law decay is eventually cut off by the (truly) 
asymptotic exponential decay. The physical reason for the existence of the 
power law region is as follows: as long as the relevant times are much 
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shorter than the relevant time scale (say, average trapping time) the value 
of this time is irrelevant. 

We have also briefly considered the effect of bias on the distribution 
function and the influence of the dangling bonds in this case. The delaying 
effect due to the dangling bonds leads, as in the unbiased case, to power 
law regions in the distribution functions. The latter can show up as power 
laws in other observables, such as the total current in Pfister's experiment. 

An important feature of the results presented is that the effect of 
dangling bonds can simulate the waiting time distribution of traps. This 
makes the distinction between dynamical and geometric effects quite subtle. 
Another feature of importance is the shape of the distribution function for 
first arrival. A comparison of our results with numerical simulations ~12) 
done on fractal networks or experimental data shows that these shapes are 
quite "universal." We believe that the reason for this shape similarity is the 
fact that a percolating cluster has basically a single backbone "channel" 
and the rest of the bonds act as dangling bonds. Thus, in spite of the fact 
that we have not computed random walks on fractal networks, the results 
are similar. A computation of random walks on fractal networks, as welt as 
other applications, are in progress. 

A P P E N D I X  A. C A L C U L A T I O N  OF T H E  P R O B A B I L I T Y  
D I S T R I B U T I O N S  

In this Appendix we calculate the probability distributions TN(n), 
Gu(n), and Qu(n) for a segment with a dangling bond of length m (Fig. 4). 
The case of no dangling bonds corresponds to m = 1. 

First, we need the following results: 
For  Cp such that 0 < Cp < 2 the only nonreal solution of the equation 

[see Eq. (4.8), where Cp = 2 sin2(~p/2N)] 

Cp = sin 0 tg(mO/2) (A.1) 

is 0 = ~ + iy, where y is the real solution of 

sin y sinh(my) 
Cp - ( _ )m + cosh(my) 

The proof is as follows. Define 0 = x + iy. Hence 

rnO sin(rex) + i sinh(rny) 
tg ~ -  cos(mx) + cosh(my) (A.2) 

Define 

Cp = Cp[cos(mx) + cosh(my)] 

822/48/1-2-18 
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Therefore 
Cp = sin x sin(mx) cosh y - cos x sinh y sinh(my) 

(A.3) 
0 = sin x sinh(my) cosh y + cos x sinh y sin(mx) 

The quantity Cp is always positive, since Cp>O by assumption and 
cosh(my) > 1 for any real y. Assuming sin x =# 0, we obtain from (A.3) 

- sin(mx) sinh(my) 
cos x - - -  cosh y > 0 

sin x sinh y 

because [sinh(my)/sinh y]  > 0. Defining F(x) = - s i n ( m x )  cotg x, we have 
F(x) > m. At an extremum xo of F(x) we have 

sin(mxo) = m cos(mxo) cos Xo sin Xo 

Hence [-since F ( x ) > m  for any x C 0  (mod ~)] 

F(xo) = - m  cos(mxo) cos2x0 > m 

which is impossible. We conclude that sin x = 0 .  Thus x = 0  or x =  
(0 ~< x < 2~ by definition). But for x = 0 it follows from Eq. (A.3) that Cp is 
negative, contrary to our assumption. Thus, x = ~ only is allowed. 

In the following, Eq. (A.1) is sometimes called the "pole equation." 

A1. Ca lcu la t ion  of  TN(n ) and QN(n) for  a S e g m e n t  w i t h  Loops 

In this case the "pole equation" reads Cp = 2 sin2(~p/2N). Applying 
Cauchy's theorem to (3.8), we have 

- 1  f I__~_AIN_II/2 1 - A  
Tu(n) = 2~----i r4z" 1 -- A - - - - W  dz (A.4) 

where F is a contour enclosing the origin. The minus sign is here because 
the domain is outside the unit disk. A contour at ~ has vanishing con- 
tribution (except when n = 1), since A is bounded everywhere. The only 
singularities in the above integrand, which we denote b y / ,  are poles (see 
text). The residue Res I at a pole in the z plane is given by 

R e s I =  ~ ~ ~poL01im -\(Z-ZP~176 . i .(A__Avole) (A.5) 

where 
A ] p o l  e = e 2~ip/N, p = 1,..., N - -  1 (A.6) 

The rest of the calculation is lengthy but straightforward. It is convenient 
to define the variables/.t, 0, and ~: z =4#/(1  + #)2, # = el0, and ~ = �88 

Hence, from Eq. (4.7), 
= ~ / ( A  + 1) (a.7) 
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Thus, 
1 

z = cos2(0/2 ) (A.8) 

By the chain rule of differentiation (subscripts denote derivatives) 

zA = Z~#~C~A (A.9) 

Using Eqs. (4.2) and (A.8), we write Ym as 

2/z 
Ym = (A.10) 

1 - sin 0 tg(mO/2) 

Doing the chain derivative, we obtain the first factor in the rhs of Eq. (A.4). 
The factors in the rhs of Eq. (A.9) are given by 

1 - #  
z , = 4  (1 +/~)3 

1 + cos mO 
/A s - -  

m sin 0 + cos 0 sin mO 2A 

1 1 - A  
~ A - - - - - -  

2 x ~ ( 1  + A )  2 

where we also used 

lim Apole-A 1 __ e2~zip/N 
a ~ Apole 1 -- A u N 

(1 + A) 2 ieiO (A.11) 

(A.12) 

Summing over the contribution of all poles, we obtain Eq. (4.9). Similarly, 

- - 1  N--1 , 2 ~ P  2 ( n _ l ) O p  Op 
QN(n)=--~-- ~ ~ s:n ~-~ ,~  ~ - t g ~ -  

p= 1 {op} 

1 + c o s  mop 
x (A. 13) 

m sin Op + sin mop cos Op 

where {Op} is the set of solutions of Eq. (A.1) where Cp=2 sinZ(zrp/2N). 

A2. Ca lcu la t ion  of  GN(n) for  the  System w i t h  Loops 

Let A m be the generating function for leaving point "0" into the first 
loop and returning to "0" or staying at "0." A single incursion into the loop 
yields rm [-see Eq. (4.1)]. Summing over all the possible incursions, we have 

Am= i +  (rm + Z/4)+ (rm + Z/4)2 + "" 

1 ( A . 1 4 )  
A m - -  

1 - (rm + z / 4 )  
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Note that A m is the generalization of X3/4 [see Eq. (3.13)]. The generating 
function for the first passage time is 

Substituting v - 
(3.8), we obtain 

Am TN 
GN-- 1 -AmQ N (A.15) 

, , ~  [see Eq. (4.6)] and employing Eqs. (A.14), (3.7), and 

vN(1 - - V  2)  

GN-- 1 + v 2N+1 (A.16) 

The poles are now located at 

__C27rip/(2N + 1 ) 
Ypole z 

We find 

p = 1 ..... 2N (A.17) 

GN( n ) -  (_)N 2 N  , 2~rp 7rp cos2,, Op Op 
2 N + i  Z Z ( ) P s l n 2 ~ - s i n 2 ~ - ~ -  ~ ~ - t g ~ -  

p = l  f I ~Opj 

1 + COS mop 
x (A.18) 

m sin O r + sin mOp cos 0p 

where {Op} is the set of solutions of Eq. (A.1). From Eqs. (A.17) and (4.7) 

Cp = 2 cos- 
2 7  

A3. C a l c u l a t i o n  of  q~,,,(n) 

~ttm(n ) is the probability distribution corresponding to Ym. We have 

- - l f r  2 1 
Tim(n) = ~ /  z;,-+ll_sinOtg(mO/2) dz (A.19) 

The calculation runs exactly as before, yielding 

10 . 20 1 (A.20) 
~m(n)=2~cos  2n+ ~sln 2 c o s 0 + � 8 9  

{0} 

{0} is the set of poles of Y,, [see Eq. (A.10)]. We have 

1 = sin 0 tg(mO/2) 

Note that ~Ul(n)= (�89 as it should. 
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In Appendix B we show explicitly that Tin(n)~,n -3/2 for large n. Since 
the generating function is the discrete Laplace transform (Poisson trans- 
form) of the corresponding waiting time distribution, we can use Tauberian 
arguments relating the small-r behavior (z = e ir to the large-n behavior. 
Fof small 0, by Eq. (A.8) we have 0 ~ 2(iq~) 1/2. If 0 is small but mO >> 1, then 
tg(mO/2)~i  [see definition of 0, Eq.(A.8)] and we obtain, Using 
Eq. (A.11), 

Ym ~ 2(1 - 02/4)(1 -+- iO) ~ 211 q- 2i(ir 1/2 ] 

and consequently Tin(n) ~ n 3/2 

A4. A S e l f - S i m i l a r  D a n g l i n g  Bond 

The purpose of this subsection is to show, in principle, how a trans- 
verse structure different from the loop can be introduced into the model. As 
an example of a self-similar bond that may have physical significance, 
consider the "iterative" (finite or infinite) blob of Fig. 9. 

Denote by B k the generating function of a single excursion into the kth 
iterated blob (k-circles): Bk is the generating function for a walk in which 
the walker enters the kth iterated blob and returns to the backbone for the 
first time. It is understood that the innermost blob is "terminated" by a 
fictitious bond (by virtue of our convention). Thus, B1, corresponding to a 
"tadpole," is 

(4) ' B 1 = 1 - -  Z / 4  - r m 

The recursion relation for Bk is obtained as follows. After the first step 
leaving the backbone the walker has the option to go back to the back- 
bone, to enter the loop, or to proceed to the next iteration. Thus 

[1 + (rm + B~) + (r,. + &)~-.-]  

1 

(1 - r m ) - -  B k 

(A.22) 

Recall that Ym 1 = 1 --rm [-cf Eq.  ( 4 . 2 ) ] .  
Equations (A.21) and (A.22) completely define the system. Define 

(A.23) 



278 Noskowicz and Goldhirsch 

The solution of the recursion relation (A.22) is 

Y + (A.24) 
Bk = - -  Y m  H 7~_ + H+y~+ 

and the quantities H+ and H are determined by B~. Defining 
x -  H / H  + , we have 

BI = Y " x 7  +7+ 

Comparing Eqs. (A.21) and (A.25), we find 

l - z / 4 - 7 +  
x = (A.26) 

y + z/4 - 1 

Note that in this case x is a function of z. Defining F -  7 /7 +, we have 

Bk = (A.27) 
7+  1 + x F  ~ 

The y+ in (A.23) has a branch point at z =  I because Y,,,(1)=2. Under a 
rotation around z = l  (see Section3) we have 7++- .7_ ,  F ~ F  1, and 
x -* x -  i. Hence Bk ~ xBk.  However, x(1 ) = 1, which yields that B k has no 
cut. The analog of ]I,, for the kth iterated blob, denoted Ye(k,  m), is 

Ys(k ,  m ) =  1 + 2 B k +  (2Bk)2+ . . . .  1/(1 - -2Bk)  (A.28) 

(the factor 2 comes from the fact that two blobs are attached to each site). 
In the limit k ~ oo we have from (A.28) 

B -  lim B k = ( z / 4 )  2 Y,,,7+_ 1 (A.29) 
k ~ z ~  

where F <  1 yields 7 + and F >  l yields 7 �9 
The analog of Y,, for (he (infinite) blob is denoted Y~,(m): 

1 
Yh(m) = 1 - ( z / 2 )  2 Y,,,{ 1 4- [1 -(zY,, /2)23' /2} -1 (A.30) 

Yb(m) is the probability of going from ihe backbone through the blob and 
back to the backbone (not necessarily for the first time). From (A.30) one 
can in principle derive the waiting time distribution by Cauchy's theorem. 
To find the poles, simply use Yb(m) in place of Ym: 

z ~ (A.31) 
rb(m)  -- A + l 



Distribution Functions for Random Walk Processes 279 

The rest of the derivation is identical to the case of the simple dangling 
bond. In conclusion, we have shown on this example that any transverse 
structure whose generating function is known can be solved using our 
method. As we have done for the simple dangling bond, we use a 
Tauberian argument to find the large-n behavior (n ~ m 2, i.e., Om > 1) for 
the blob. First we calculate F for small 0. From Eq. (A.23), 

~ ! [ 1  + (-20i)1/2]. Since F = 7 _ / 7  + we find F ~  1 + 8eirc7/sq~ 1/4 ( z = e  i~) ~+ ~2 -- 

and F <  1 and the positive sign must be chosen in Eq. (A.30). Hence, using 
Eq. (A.31), 

Y~(m) ~ 2{ 1 - 2[ -i(iO) ~n] 1/2} ~ 2(1 + 20'/4e i~7/8) 

and the waiting time distribution for the blob behaves like ///-5/4 for (inter- 
mediately) large n. 

A P P E N D I X  B. A S Y M P T O T I C  A N A L Y S I S  OF T H E  
D I S T R I B U T I O N  F U N C T I O N S  

B I .  A s y m p t o t i c  Behav ior  of  GN(n) and TN(n) 

For very large n the functions GN(n) and TN(n) decay exponentially 
since they are sums of asymptotically exponential functions (the pole 
closest to z = 1 dominates). In this Appendix we study the behavior of these 
functions in the moderately large-n region so that no single exponential 
dominates. 

We propose to study the asymptotic behavior of T N and GN 
simultaneously. These quantities are given in Eqs. (A.18) and (4.9). We 
redefine the index of summation of G u in order to bring its "pole equation" 
to a form similar to that of T u. Define a new index of summation by 
performing the replacement p ~ p + N. Then G N reads [see Eq. (A.18)] 

1 N 
G N ( n ) = - -  E E (-)p 

2 N + I  p= X+l {0} 

x s i n ( 2  ~r rtp ~ ~z 2rcp 
+ 1 / N + ~ - ~ ]  sin (1 + 1 ~ +  2--N-~J 

0 0 1 + cos mO 
COS 2n 

x tg ~ 2 cos 0 sin mO + m sin 0 

For large N this is approximately equal to 

2 N 7 [ ' p  - - 2 7 z P  
Gu(n)'~ZU+l • Z (_)p+l p = l  {0} c~ 1,_~ singv--7-7 2 N +  1 

0 2n 0 1 + cos mO 
x t g ~ c o s  2 c o s 0 s i n m 0 + m s i n 0  
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GN and T N a r e  approximately equal to 

N 
P(n)~ ~ ~ ( - - )p+lF(p )cos2"O 0 l + c o s m 0  (B.1) 

p= 1 {0} ~ tg~ m sin 0 + sin mO cos 0 

with a "pole equation" of the form 

Cp = sin 0 tg(mO/2) (B.2) 

where for T N [see Eq. (4.9)] 

1 
F(p) = ~ sin 2 

J V  
(u.3) 

and 

Cp = 2 sin 2 up 
N 

(B.4) 

whereas for GN [see Eq. (A.18)] 

2 2up up 
F(p) - 2N+~ sin ~ cos 2--~--+ 1 (B.5) 

and 

Cp=2  sin 2 uP (B.6) 
2 N +  1 

which for large N reduces to Eq. (B.4). Clearly, for large n, only small 
values of 0 contribute to the sum in Eq. (B.1). The "pole equation" (B.4) 
reads for small 0 

Cp ~ 0 tg(mO/2 ) (B.7) 

which, by defining 

x = �89 (B.8) 

and 

Kp = �89 (B.9) 

can be written as 

K p ~ x t g x  (B.10) 
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From Fig. 5 it is seen that the solutions x s take the form 

x~ = ~ts + e ~ / 2  (B.11 ) 

where s is a nonnegative integer. We have 0 < ~ , < = / 2  and x, is the 
solution corresponding to s. Note that if s = O(m), then by Eq. (B.11 ), x~ is 
O(m) and by Eq. (B.8), 0 =  O(1), which does not contribute to the sum in 
Eq.(B.1) because it contributes an exponentially small correction. 
Equation (B.10) is 

Kp ~ (rts + cq ~/2) tg(c~,z/2) (B.12) 

The factor to the right of Cos2n(o/2) in Eq. (B.1) is 

- -  s +  ( B . 1 3 )  
rn ~(2s + c~,) + sin(~,~z/2) 

We consider two regimes of Kp: Kp >> 1 and Kp ~ 1. The first case occurs if 
mCp>>l [see Eq. (B.9)]. If p=O(N) [the index of summation in 
Eq. (B.I)],  then by Eq. (B.4), Cp=O(1) and Kp>> 1. Thus, in the sum of 
Eq.(B.1) there are always terms with Kp>>l. If rn/N2>)>l [see again 
Eqs. (B.1) and (B.4)-(B.9)], then Kp ~ 1 is impossible. Hence, if m/N2> 1, 
only terms with Kp ~> 1 contribute to the sum. If m/N 2= O(1) or m/N24~ 1 
we must take into account both the terms for which Kp >> 1 and Kp ~ 1. We 
define the respective contributions to P(n) coming from terms Kp >> 1 and 
Kp '~ 1 as Pc(n) and Ps(n). Thus, P(n) ~ Pc(n) + Ps(n). 

?he Case Kp> 1. Following Eq. (B.12), Kp can be large if s = 0 ( 1 )  
and cq.~ 1 or s is large and tg(~s~z/2) = O(1). In the first case (S~Kp) define 
y through cq = 1 - y, where y ~ 1. Hence 

1 
tg(~,, ~/2) ~ -  

yrc/2 

It follows from Eq. (B.12) that 

2 s+  1 2s+  1 2s+  1 
- - 7  Y~ Kp cts~ l Kp ~ 1  (B.14) rn sin2(rEp/2N) 

Therefore 

2s+  1) 7r ~z 2 (2s+  1) 2 
I + cos cq.~ ~ 2 sin 2 2m sin2(rcp/2N) ~ ~ sina(rrp/2N) (B.15) 
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In this case, expression (B.13) is approximately equal to 

~2 (2s + 1)2 

m 3 sina(~p/2N) 

In the second case (i.e., s >1 )  it follows that [using expression (B.12)] 

2 Kp (B.16) 
tg(c%~z) ~ ~2 s 

Since s > l ,  by assumption, it follows that ~,.~ 1 and expression (B.15) 
approximately equals 

1 1 

m 1 -k K2/7c2s 2 

Approximating cos(0/2), for 0 ~ 1, by an exponential and using Eqs. (B.8) 
and (B.11), we find for s =  O(1) (~,.g 1) 

cos2"(0/2) ~ exp[( -rc2/4~,,)(2s + 1) 2 n] 

and for s >  1 (a,,~ 1) 

C0S2"(0/2) ,,~ exp[(--)z2/m 2 ) s2n ] 

Finally, PL(n) reads 

re2 ,,v F( p ) 
5" (-)~+' P L(n ) ~ --~ p = Pmio sin 4(np/2N) 

K~ i ~2 ] x ~ (2 s+ l )2exp  - - - ( 2 s + l ) 2 n  
,- = 0 4m 2 

+ - -  ~ ( - ) P + ~ f ( p )  e x p - - - - 5 s 2 n  (B.17) 
m p = Pmin .v= Kp m- 

where Pmin is the smallest p for which Kp > 1. If m / N  2 > 1, then Pmin = 1 
because K~ > 1 in this case [see Eqs. (B.9) and (B.4)] 

PL(n) ~ P(n) when m / N  2 >> 1 (B.18) 

When n ~ m  2 the summation over s in the first term in Eq. (B.17) can be 
replaced by an integral over s. The contribution of this term, which we 
denote by Pl(n) ,  can be written 

N 

P l ( n ) ~  1 ~ ( _ ) p + ,  F(p)  n 3/2 
P = P m i n  sin 4 ~ 2 N )  (B. 19 ) 
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If also n >> N 4, then the second term in Eq. (B.17) can be neglected with 
respect to P~(n), since 

(K,m,n)~ n 
) t n  2 

~>(K, 2 n-n->>~ 

[see Eqs. (B.9) and (B.4)]. Hence, in this case PL(n)~ Pl(n). As explained, 
this approximate equality is true for m 2 >> n >> N 4. In this case PL(n) ~ n 3/2 
and we have a power law decay of PL(n). 

Since the mean first passage time (MFT)  is O(mN2), then, when 
m/N2>> 1 [by Eq. (B.18)], TN(n) and Gx(n) are within the range of power 
law behavior near the MFT. In practice, even if the second term is not 
exponentially small, one may still obtain a power law behavior dominating 
over the contribution of the second term of PL(n). When N>> m, the second 
term is O(1/m), whereas the first term in Eq. (B.17) is O(N4/m 3) (because 
of the sine in the denominator)  and thus PL(n)~ P~(n) again. If m >> 1 and 
n ~< m 2, the summation over s can be replaced by an integral as before and 
we obtain the same power law behavior. In this case the conditions are 
N > m >> l and N ~ n ~ m 2, which implies N 4~ mZ ~ N 2. 

We thus found two regimes in the (m, N, n) space where we expect 
power law behavior of PL(n). However, for m ~< N 2, one must add to PL(n) 
the terms with Kp ~ 1. 

In the sequel we shall have to evaluate sums of the The Case Kp ~ 1. 
type 

S =  Y" ( - ) P A  (B.20) 
p = l  

where A is a function of p/N. To perform this sum, we define an index q 
such that p = 2q + a, where o = 0, 1. Equation (B.20) becomes 

1 ~2 A ( 2 q / N ) - A ( Z q +  1/N) 
S = N ' -"  N 1 (B.21) 

q- - I  

If A(2q/N) - A((2q + 1)/N) is O(1/N), 

~2 d~ .,:=2q/N 1 S ~  - -  (B.22) 
q = l  N 

Approximating the sum by an integral, we find 

S ~ �89 - A (2/N) ] (B.23) 

Kp4~ 1 implies eq<{ 1 from Eq. (B.12), which becomes 

Kp ~ �89 + %)(cq~/2) (B.24) 
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Using Eq. (B.9), we have 

m p2 
N--- 5 ~ c~,(2s + ~,) 

Hence, for s = 0 

P 

and for s r 0 
m p2 

(B.26) ~~ ~ N 2 2s 

In Eq. (B.1) the terms with Kp~l(Ps) separate into two contributions: 
those for which s = 0 and those for which s r 0. Thus 

Px(n)= P,_o + P,#o 

where 

P~=o(n) ~ - -  (-):'+' F(p)exp\~p2n (B.27) 
mp=l 

From Eq. (B.13) the cosine factor to first order in c~ [i.e., keeping the term 
O(m/N2)] is 

COS2,, 0 ~--7C2/ 2 Np2) 1 ~ e x p L - ~ - ~ s  + ~ 5  n 

Hence 

1 ~ ( _ ) , + L F ( p ) e x p  ~ s 2 ' mp2~ P"e~ ,=~ .,.~o - -  +~N5)  n (B.28) 

Obviously, the double summation in Eq. (B.28) decouples to a product of 
single summations. Hence 

P,~o(n)~-- (-)P+l F(p)exp 2--~mPZn ~ exp ~-s2n 
m p~l s-~0 

(B.29) 

which, approximating the sum over s by an integral (if n < m2), becomes 

1 ) ~ + 1  
P,~o(n)~2(rm)l/2 (- F(p) exp -~-Nsp2n (B.30) 

p=l 



Distribution Functions for Random Walk  Processes 285 

If n>~m 2, then the sum over s equals approximately exp[(-rc2/m2)n]. 
Note that if we write Ps= 0 in the form 

then P.,,eo reads for n < m  2 

1 P==o=--f(n) (B.31) 
m 

and for n > m 2 

1 
P,.r - 2(~n)~/2f(2n) (B.32} 

1 lexp( n)lI{2n) (=33) P ~ o  - - -  
�9 - - m  

We now calculate f (n)  for TN and GN separately. For TN, by Eq. (B.3), 

7[2 i p 2 l _ r c 2 { p , ] 2 n ]  

p = l  

which is of the form of Eq. (B.20), yielding, by Eq. (B.23), 

7[ 2 
f(n)~N-Sexp(-~N2n ) (B.34) 

For GN we use Eq. (B.5) and we find 

~ e x p  n (B.35) 
p = l  

Using Eq. (B.23), we obtain 

f (n)  =NT ex p ~ T n  (B.36) 

If n 4~mN 2, i.e., n ~ MFT, the exponentials in Eq. (B.34) and (B.36) are 
approximately of order unity. We summarize the results of this Appendix: 

a. When m/N2~l, then, in the region m2~n~mN 2, P(n) is 
approximately constant (plateau region). The reason is that for n > m 2 the 
terms corresponding Kp> 1 are exponentially small [see Eq. (B.17)]. In 
this case the contribution Ps~0(n) to Ps(n) is also multiplied by a factor 
~ e  -'/'~2 [see Eq. (B.33)]. Therefore, only P=-o survives [see Eq. (B.31)]. 
Finally, for n~mN 2, f(n) is approximately constant [see Eqs. (B.34), 
(B. 36)]. Compare this result with the plateau in Fig. 7. 
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b. When m / N 2 >  1 only terms corresponding t o  Kp >~ 1 contribute 
and we have an n 3/2 behavior until n ~ m 2. Hence 

m / N  2 < 1 m 2 ~ n ~ m N  2 plateau 

m / N  2 >), 1 m 2 >> n >> mN 2 n 3/2 

For n larger than max(m 2, mN 2) the decay is exponential. 

B2. Asymptotic Behavior of q~m(n) 

~Um(n ) is given by Eq. (A.20) and its pole equation is 

1 = sin 0 tg(mO/2) 

Hence, Cp = 1 and Kp = m/2 [-see Eq. (B.9)] and in this case Kp> 1. 
By the previous analysis we have for s ~ m/2 

rc 
c q ~ l - 2  2s+l - ,  0 ~ - - ( 2 s + l )  

m m 

For s = O(m/2) we have e, ~ m/~2s and 0 ~ 27rs/m [i.e., 0 = O(1)], which is 
exponentially small for large n. Thus, Eq. (A.20) becomes 

~2 m 2S+I  2 
t t tm(n) ,~s~O(- - - - - -~ )  exp I-~4~ 2 (2Sr~---~l) 2 n ] (B.37) 

Approximating the sum by an integral, we find 

1 
~g'/m(Y/) ~ -  n --3/2 (B.38) , / ;  

which is valid as long as the exponential factor is O(1), i.e., n ~rn  2, after 
which the decay is exponential (see Fig. 8). Thus, very long dangling bonds 
introduce an algebraic tail in the distribution functions. 

APPENDIX C. PROBABILITY DISTRIBUTIONS WITH BIAS 

As in the test, we have a probability Pl to move from left to right on 
the backbone and P2 < Pl from right to left. We choose Pl -t- P2 = 1/2. This 
will not limit the generality of our results. As in the text [-see Eq. (4.3)], 
one can develop a recursion relation for QN .~211 In principle one should 
define two types of QN, QN § and QN , corresponding to walks where the 
walker moves from point "0" back to point "0" or from point "N" back to 
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point "N." However, it was shown in Ref. 19 that QN + = QN- .  We thus use 
QN to denote these quantities. Following Ref. 19, 

Ym 
QN+I =-PIP2 z2 (C.1) 

1 - Q N Y m  

where Ym is defined in the text [see Eq. (4.2)]. 
It was also proven in Ref. 19 that 

(plI 
N 

= - -  T ;  (C.2) 
T+ \P2]  

with obvious notation. The second recursion relation is 

QN+~ =QN-~ (C.3) 1 -  Y,,,Q~ 

Using Eq. (C.2), we rewrite (C.3) to read 

Q N + I = Q x + ( p 2 t N  T,~ 2Y',, 

\ p j /  1 -  YmQx 
(C.4) 

Define 

A _ 
1 - - ( l - - 4 a )  I/2 

1 + (1 - -4a)  j/2 
{c.5) 

and 

a = 191 p27.2y~m (C.6) 

Hence 

ON ~ Y ~ I  - -  
A I_A,~  i 

A + I  1 - A  N 
(C.7) 

and 

\ P 2 ]  I - -A  N 
(c.8) 

The poles of QN and T + are located at 

Ap = e i2rcp/N, p = 1,..., N - -  1 

Using Eqs. (C.5)-(C.6), we obtain 

(Pl P2) V2 .Z Ym = Apl/2/( Ap q- 1) 

(C.9} 

(c.m) 
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The "pole equation" is 
1 

(p~ pz)' /Z zYm = (C.11) 
2 cos( top~N) 

We can write G~ as [see Eq. (A.15)] 

where 

G~ = A , , T + / ( 1 - A ~ Q N )  (C.12) 

A, ,  l =  Ym x -- p2z  (C.13) 

or 

( p l ~  N/2 A (N 1)/2(1_ A 2) 
G~ = " "\P2/ ( P ' P 2 ) ~ / Z z Y "  - [ ( P 2 / p l ) A ] ~ / 2 ( 1 - A N ) +  1 - -  A N + I  

(C.14) 

The poles in Eq. (C.14) must be found numerically in order to find the 
corresponding values of z. For  each of these poles Eq. (C.10) must be 
solved (numerically). The residue must be calculated and the summation 
on the poles must be performed. In the limit of vanishing bias we of course 
recover Eq. (A.15). Another calculable limit is that of infinite bias, i.e., 
Pl = �89 P2 = 0, i.e., the bias is so strong that the carrier has zero probability 
to jump against the field. In this case G~ (i.e., G N for infinite bias) can be 
found directly as follows. Starting at site "0", the carrier performs any num- 
ber of incursions into the loop, which yields Ym, then goes to site "1," 
where the process repeats itself with N -  1 sites left. Thus 

- ~  ~ = ( 1 Z r m )  N (c.15) Grv - 5 z Y , . G N _  i 

[in this case G ~ ( z )  obviously has multiple poles in the complex plane]. 
We return to the case of finite bias. 
In order to calculate the MFT ~, it is useful to define a new variable ~: 

A = e 2i~ (C.16) 

G N reads 

G x = ( p , ]  N/2 sin~ (C.17) 
\ P 2 /  sin ( N +  1) ~ - (p2/p1)~/2 sin(N~) 

The MF T is 

= (G%/GN)~ =, (C.18) 
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Define b, the bias parameter ,  as (b oc E) (see Section 5) 

Pl = ~ceb and P2 = ~ce b 

where 

A t z = l  we have 

289 

(C.19) 

~c = 1/(4 cosh b) (C.20) 

We finally obta in  

= (2m - 1 ) coth b I c o t h  b 

1 - t h  b 
A - -  - -  e 2b 

l + t h b  

= ( - - i / 2 ) I n  A = ib 

(c.21) 

(c.22) 

( N +  1 ) c o s h [ ( N +  1 ) b ] - e - b N c o s h ( N b ) ]  

sinh [ ( N +  l)  b ]  - e -b  s inh(Nb) J 

For  bN~> 1 we have 

T = N(2m - 1 ) coth b 

and for b --, 0 and bN ~ 1 we have, after some algebra,  

~ N(N + 1 )(2m - 1)(1 - bU)/3 

(C.23) 

(c.24) 

(C.25) 
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